BOROUJERDI Sébastien @ UNIVERSITE DE REIMS
JACQUE Jeremy = CHAMPAGNE-ARDENNE

Master 1° année STIC spécialité informatique

REPPOrt @ pProjet
Symthese o images

Programmation d’un Raytracer simplifié en C++

Rapport du Lundi 27 février 2006

Contact : sebastien.boroujerdi@etudiant.univ-reims.fr Enseignant : Mr Rémion
Jeremy.jacque@etudiant.univ-reims.fr

Sommaire :

I - Introduction p3

IT - Les lampes ponctuelles isotropes p3
II.1 - Théorie et implantation
II.2 - Exemples

III - Le modéle d’éclairement de Phong p 4
III.1 - Théorie et mise en place de ce modéle
II1.2 - Exemples

IV - Le modeéle d’éclairement de Whitted p5
IV.1 - Gestion des rayons réfléchis et des rayons réfractés (loi de Beer)
IV.2 — Théorie et mise en place
IV.3 - Exemples

V - La caméra « trou d’aiguille » ou pinhole p8
V.1 - Théorie et mise en place
V.2 - Exemples

VI - Les quantificateurs p8
VI.1 - Quantificateur Noir et Blanc
VI.2 - Quantificateur « Sépia »

VII - Les ombres portées p 10
VII.1 - Implantation
VII.2 - Exemples

VIII - Les textures p 10
VIII.1 - Implantation
VIII.2 - Exemples

IX - Autres batteries d’exemples p12

X - Bibliographie p 14

I - Introduction

Le but de ce projet de synthéses d’'images est de réaliser un Raytracer (simplifié).
Avant de détailler chacune des parties proposées dans notre plan, nous souhaitons
exposer ce que nous possédions (suite aux 2 TP en salle machine) :

- Un lancé de rayons sur une scéne, avec gestion d’intersection entre les rayons
et les objets de la scéne. Ces objets se limitaient exclusivement a un modele
de sphéere. Nous avons, suite aux examens, gérer les plans infinis, ou toutes
les données nécessaires étaient fournies. Nous ne détaillerons donc pas la
réalisation du plan, qui est, comme vous pourrez le constater en étudiant notre
code source (compilable sous Visual Studio.NET ou bien Visual C++), est
relativement simple.

- Une entité Film, permettant la conversion d’un espace en deux dimensions
vers un espace en trois dimensions, et vice versa.

- Toutes les autres entités fournies lors des TP.

Pour plus de clarté dans ce rapport, nous avons choisi de n'y ajouter aucun morceau de
code en annexe. Nous avons commenté le plus efficacement possible nos fichiers
sources.

Nous allons donc pouvoir entamer la premiére partie, c'est-a-dire la gestion de lampes
ponctuelles isotropes.

II - Les lampes ponctuelles isotropes
I1.1 - Théorie et implantation

Si I'on se place du point de vue des sources lumineuses uniquement, on constate que
le seul besoin est de calculer la puissance lumineuse regue en un point P de la scéne
éclairée par ces sources. Lors de son instanciation, une lampe est positionnée dans un
repére global, et posséde son propre repére local. De méme, elle posséde un spectre de
puissance lumineuse, qui est gérée par la classe SpectrePuiss de notre Raytraycer.
Comme la logique le suppose, la couleur regue en point provenant d'une source
lumineuse s’atténue en fonction de la distance entre ce point et la source lumineuse (car
elle est ponctuelle). Toutefois, nous nous attarderons quelque peu sur cette atténuation,
qui peut étre calculée de la fagon suivante :

Kec+ KI*d+ Kq*dtd

Avec : Kc coefficient d’atténuation constante
Kl coefficient d’atténuation linéaire
Kq coefficient d’atténuation quadratique
d distance source lumineuse / point a éclairer

On remarqgue 3 facteurs d’atténuation que sont les facteurs d’atténuation linéaire,
constante et quadratique. En fonction de ces trois facteurs, la couleur regue en un point P
peut varier fortement. C’est pourquoi nous avons choisi d’attacher a la classe Lampelso
(pour lampe ponctuelle isotrope) un champ protégée « att », qui est un objet de type
Attenuation, et qui permet, en fonction des trois coefficients précédents et de la distance
entre la source lumineuse et le point P, de calculer la valeur du spectre lumineux regue
en P. La définition de la clase atténuation se trouve dans le fichier lampe.h.

I1.2 - Exemples

Pour les exemples, veuillez s'il vous plait vous référer aux exemples de la partie suivante.

III - Le modeéle d’éclairement de Phong
II1.1 - Théorie et mise en place de ce modéle d’éclairement

Grace a ce modele d’éclairement, la classe matiere permettant de gérer les propriétés
matérielles affectées a un objet de la scéne va prendre tout son sens. En effet, que serait
une piece d’argent sans cette tache spéculaire qui lui est propre ? Comment passer d'une
matiére plutot lisse a une matiére mate, ou la réflexion spéculaire est faible ? Le modeéle
de Phong nous apporte la solution : selon le point de vue de I'observateur, de la lampe
(dans notre cas ponctuelle) et les coefficients relatifs a la gestion de la spécularité
d’aprés Phong. Pour détailler brievement I'équation fournie dans notre support de cours,
on peut modifier I'aspect de cette spécularité en jouant sur les parametres de taille de la
tache se projetant sur I'objet, et sur la valeur de la fonction de transfert, notée Ks, qui
permet de jouer sur un aspect lisse ou mate (métal, plastique) de la matiére. Pour la
série d’exemples suivants, nous allons faire varier ces différents coefficients, mais
également les coefficients d’atténuation de la lampe isotrope. Pour le code source, vous
pouvez consulter le fichier scene.cpp, méthode traceRayon de la classe Scene.

II1.2 - Exemples

Voici quelques exemples, que vous pourrez tester par vous-méme avec notre
application, en vous référant au fichier AIDE.txt. Nous faisons varier ici la taille de la
tache spéculaire, ainsi que la fonction de transfert de réflexion spéculaire (lampe
blanche, sphere rouge):

8. Ks =16
0.3 Rs = 0.3

=
n
AN
=
2]
oH
o X
n n
I

Figure 1: Modéle d’éclairement de Phong avec quelques coefficients différents

Voici d’autres exemples intégrant plusieurs lampes ponctuelles (sphére grise, lumiere
colorée):

Figure 2: 2 lampes (bleue et verte) Figure 3: 3 lampes (rouge / bleue / verte)
+ ambiante (Ka = 0.2) + ambiante (Ka = 0.3)

Ks = 4. Ks = 8.

Rs = 0.4 Rs = 0.5

IV - Le modeéle d’éclairement de Whitted
IV.1 - Théorie et implantation de ce modéle

Ce modele d’éclairement permet d’ajouter a notre scéne la gestion de la réflexion et de
la réfraction. Il s’agit donc d’un modeéle de Phong amélioré, ol les rayons réfléchis et
réfractés sont gérés de facon récursive dans notre programme, jusqu’a une profondeur
maximale de récursivité (nous avons choisis 6 par défaut).

Pour gérer les rayons réfléchis, nous nous basons sur le schéma suivant :

O N R

Figure 4: N : normale a la surface, L vecteur de la source lumineuse au point, R rayon réfléchi, V vecteur
Observateur / Point.

On recherche donc le rayon réfléchi représenté par le vecteur R, qui peut étre calculé de
la fagon suivante :

- — —

R=V-2%(V:N) *N

On renverra par la suite, lors des appels récursifs, un rayon ayant pour origine le point
d’intersection et pour direction celle obtenue par le calcul précédent. Ainsi deux objets
réfléchissant se réfléchiront I'un dans l'autre, comme vous pourrez le constater dans les
exemples suivants.

Pour la réfraction, le phénoméne est un peu plus compliqué a gérer. En effet, la
réflexion se passe en dehors de l'objet, et les calculs d’intersection sont instinctifs. Pour
la réfraction, nous devons savoir si l'intersection rayon / objet a lieu a I'extérieur de la
sphére ou bien a l'intérieur. Nous avons choisi de vous présenter un petit schéma
décrivant le comportement des rayons, par exemple dans une forme de sphére :

Source lumineuse

N

(Objet scéne

Figure 5: Phénomeéne de réfraction

Encore une fois, le rayon réfracté dépend de coefficients comme I'indice de réfraction des
milieux de la scéne (eau, air, etc ...). Voici quelques exemples qui refletent ces quelques
explications :

IV.2 - Exemples

1. Phénomeéne de réflexion

Figure 6: Réflexion récursive sur 2 sphéres éclairées ~ Eigure 7: idem figure de gauche mais inversion des
par une lampe blanche. On percoit méme la tache coefficients de reflexion.
spéculaire de la sphére bleue sur la grise.

Sphere bleue : Kr = 0.3
Sphére grise : Kr = 0.7

Remarques : Afin de gérer correctement le modele de Whitted, les phénomeénes de
réflexion et de réfraction, notre méthode Rendu de la classe scéne renvoie le premier
objet intercepté par le rayon lancé. De ce fait, nous arrétons le parcours de la liste
d’objets de la scéne dés qu’une intersection se produit (ce qui n‘'empéchera pas par la
suite de renvoyer d’autres rayons). Cet arrét prématuré permet de gérer implicitement
un tampon de profondeur ou ZBuffer, sans avoir a stocker en mémoire une zone

supplémentaire réservée uniquement au ZBuffer. Vous pouvez le constatez sur I'image
suivante :

Figure 8: La petite sphére est devant la grosse (on voit 'ombre portée de la violette sur la grise)

2. Phénomeéne de réfraction

Nous considérerons dans nos exemples l'indice de réfraction du verre pour une sphére
transparente. Le rayon réfracté est également renvoyé de fagon récursive. La figure
suivante présente une scéne composée de 2 plans, de plusieurs petites sphéres qui vont
servir de « témoins » pour la réfraction. Voici notre résultat (notre préféré) :

Figure 9: On constate que le phénomene de réfraction déforme les petites sphéres que I'on pergoit a travers
(vertes). L'indice de réfraction pour l'intérieur de la sphére est celui du verre, soit 1.5.

V — Caméra trou d’aiguille ou Pinhole
V.1 - Théorie et mise en place

La majorité des calculs sont détaillés dans le support de cours, nous ne détaillerons
donc pas cette partie. Toutefois, il faut veiller, lors de I'implantation de la caméra, a
gérer le pas d’échantillonnage lors du parcours de I'image destination, afin de ne pas
obtenir de déformation. Cette caméra nous permet d’obtenir une vue en « perspective »,
et de pouvoir placer I'observateur en divers endroit de la scéne.

V.2 - Exemples

Voici les résultats que nous obtenons aprés implantation de la caméra trou d’aiguille
(comparaison avec la scene d’origine) :

Figure 10: Sans caméra pinhole Figure 11: Avec caméra pinhole

VI - Les quantificateurs

Les quantificateurs permettent un traitement post opératoire du film obtenu. Une fois
le rayon lancé, réfléchi, etc ... nous récupérons la valeur du spectre de puissance au point
d’intersection rayon / scéne. Ce spectre est transmis a I'opérateur () d'un objet
Quantificateur, qui va ensuite, selon son type d’instanciation (template et abstrait), nous
permettre d’obtenir divers effets visuels comme le noir et blanc (luminance), ou encore
I'effet sépia bien connu pour représenter des scénes anciennes. Nous allons tout d‘abord
étudier le quantificateur noir et blanc, qui nous permettra d’obtenir facilement celui de
I'effet sépia.

VI.1 - Quantificateur Noir et Blanc

Pour ce quantificateur, on effectue simplement une moyenne des composantes du
spectre de puissance (luminance). On affecte a chaque composante RGB du résultat la
valeur de cette moyenne (multipliée par 255, pour étre dans l'intervalle [0, 255]). Voici
ce que nous obtenons aprés implantation de ce quantificateur :

Figure 12: Application du quantificateur noir et blanc (cf scéne précédente)

IV.2 - Quantificateur « Sépia »

D’apres les informations que nous avons pu obtenir sur ce quantificateur, il s’agit d’'une
fonction de luminance sur le spectre de puissance, avec des pourcentages pour chaque
composante du spectre de puissance. Nous avons retenus les coefficients suivants :

100% pour le rouge (par rapport a la luminance du spectre)
89.2% pour le vert
69.4% pour le bleu.

Nous obtenons les résultats suivants :

Figure 13: Application du quantificateur sépia (cf scéne précédente)

O

VII - Les ombres portées
VII.1 - Implantation

Le principe de I'ombre portée est assez simple ; en effet, il nous suffit, lors de
I'interaction d’un rayon avec un objet, de savoir si un objet est déja devant. Si oui, il est
dans I'ombre (ou la partie de I'objet concerné), sinon il est pleinement visible. Il nous
suffit donc, dans notre méthode traceRayon de la classe Scene de savoir si il y a un objet
entre un autre objet et le rayon. Voici ce que nous obtenons :

VII.1 - Exemples

Figure 14: Ombres portées (avec réflexion sur la sphére)

VIII - Les textures
VIII.1 - Implantation

A elle seule, I'implantation de textures occuperait les 5 pages de ce rapport. Nous
décrirons donc briévement cette implantation, qui concerne uniquement les textures
dites « textures 2D ».

Avant de commencer, nous devons préciser que le repére associé aux coordonnées de
textures est un repére en deux dimensions, obtenu par rapport aux dimensions de
I'image et de I'objet ou la texture doit étre appliquée. Nous allons donc, d‘aprés un point
de R3 (objet pR3), calculer les coordonnées correspondantes dans lI'image de texture.
Nous irons ensuite chercher la valeur du pixel sur I'image (texel), pour la multiplier par la
valeur du spectre de puissance obtenu par le modéle d’éclairement et la matiére de
I'objet. Comme pour le calcul de normale, I'affectation d’une coordonnée de texture
dépend de l'objet a « recouvrir » de la texture. Nous détaillerons ici la sphére, mais vous
pourrez consulter le code relatif a chacun des types de forme dans form.cpp (cf
également la méthode PropOpt de la classe Objet).

Soit u et v les coordonnées de texture ; nous allons devoir utilisé un systéeme de
coordonnées polaires, ou r représente le rayon et la coordonnée angulaire.

On obtient donc :

r = arcos(-Vn . Vp) ol . représente le produit scalaire, Vn un vecteur dirigée vers

le pble nord de la sphére, et Vp le vecteur ayant pour origine le centre de la sphére et
dirigée vers le point d’intersection. Par la suite, nous pouvons donc calculer v telle que :

10

v=r/Pi
On obtient ensuite :

C = (arcos(Vn . Vp) / sinus(r)) / (2*Pi)
avec finalement:

u=C(oubien 1. -0

Les exemples suivants seront certainement plus parlants :

VIII.2 - Exemples

1. Application de texture de marbre su une sphére, et de bois sur le plan

Figure 15: Sphére texturée de marbre, plan texturé de bois

On change maintenant la matiére de la sphére, qui était blanche :

11

Figure 16: Application de texture et prise en compte de la matiére

IX — D'autres exemples et résultats

Et voici une série d'images reflétant les points précédemment traités.
Ici, on joue avec les propriétés matérielles des objets (ambiant et spéculaire) :

On peut également appliquée différentes propriétés aux objets texturés, avec prise en
compte des lampes :

Et une jolie texture pour finir :

13

X - Bibliographie

1) http://www.linuxgraphic.org/section3d/articles/raytracing/reflexion.html
2) http://www.limsi.fr/Individu/jacquemi/IG-TR-7-8-9/menu-eclairt.html
3) http://lab.erasme.org/3d/light.html

14

